
5 Classes and
Interfaces

As an object-oriented programming language, Python supports a full
range of features, such as inheritance, polymorphism, and encap-
sulation. Getting things done in Python often requires writing new
classes and defining how they interact through their interfaces and
hierarchies.

Python’s classes and inheritance make it easy to express a program’s
intended behaviors with objects. They allow you to improve and
expand functionality over time. They provide flexibility in an envi-
ronment of changing requirements. Knowing how to use them well
enables you to write maintainable code.

Item 37: Compose Classes Instead of Nesting Many
Levels of Built-in Types

Python’s built-in dictionary type is wonderful for maintaining
dynamic internal state over the lifetime of an object. By dynamic,
I mean situations in which you need to do bookkeeping for an unex-
pected set of identifiers. For example, say that I want to record the
grades of a set of students whose names aren’t known in advance.
I can define a class to store the names in a dictionary instead of using
a predefined attribute for each student:

class SimpleGradebook:
 def __init__(self):
 self._grades = {}

 def add_student(self, name):
 self._grades[name] = []

 def report_grade(self, name, score):
 self._grades[name].append(score)

9780134853987_print.indb 1459780134853987_print.indb 145 24/09/19 1:34 PM24/09/19 1:34 PM

146 Chapter 5 Classes and Interfaces

 def average_grade(self, name):
 grades = self._grades[name]
 return sum(grades) / len(grades)

Using the class is simple:

book = SimpleGradebook()
book.add_student('Isaac Newton')
book.report_grade('Isaac Newton', 90)
book.report_grade('Isaac Newton', 95)
book.report_grade('Isaac Newton', 85)

print(book.average_grade('Isaac Newton'))

>>>
90.0

Dictionaries and their related built-in types are so easy to use that
there’s a danger of overextending them to write brittle code. For
example, say that I want to extend the SimpleGradebook class to keep
a list of grades by subject, not just overall. I can do this by changing
the _grades dictionary to map student names (its keys) to yet another
dictionary (its values). The innermost dictionary will map subjects
(its keys) to a list of grades (its values). Here, I do this by using a
defaultdict instance for the inner dictionary to handle missing sub-
jects (see Item 17: “Prefer defaultdict Over setdefault to Handle Miss-
ing Items in Internal State” for background):

from collections import defaultdict

class BySubjectGradebook:
 def __init__(self):
 self._grades = {} # Outer dict

 def add_student(self, name):
 self._grades[name] = defaultdict(list) # Inner dict

This seems straightforward enough. The report_grade and
average_grade methods gain quite a bit of complexity to deal with the
multilevel dictionary, but it’s seemingly manageable:

 def report_grade(self, name, subject, grade):
 by_subject = self._grades[name]
 grade_list = by_subject[subject]
 grade_list.append(grade)

 def average_grade(self, name):
 by_subject = self._grades[name]

9780134853987_print.indb 1469780134853987_print.indb 146 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 37: Compose Classes Instead of Nesting Built-in Types 147

 total, count = 0, 0
 for grades in by_subject.values():
 total += sum(grades)
 count += len(grades)
 return total / count

Using the class remains simple:

book = BySubjectGradebook()
book.add_student('Albert Einstein')
book.report_grade('Albert Einstein', 'Math', 75)
book.report_grade('Albert Einstein', 'Math', 65)
book.report_grade('Albert Einstein', 'Gym', 90)
book.report_grade('Albert Einstein', 'Gym', 95)
print(book.average_grade('Albert Einstein'))

>>>
81.25

Now, imagine that the requirements change again. I also want to
track the weight of each score toward the overall grade in the class
so that midterm and final exams are more important than pop quiz-
zes. One way to implement this feature is to change the innermost
 dictionary; instead of mapping subjects (its keys) to a list of grades
 (its values), I can use the tuple of (score, weight) in the values list:

class WeightedGradebook:
 def __init__(self):
 self._grades = {}

 def add_student(self, name):
 self._grades[name] = defaultdict(list)

 def report_grade(self, name, subject, score, weight):
 by_subject = self._grades[name]
 grade_list = by_subject[subject]
 grade_list.append((score, weight))

Although the changes to report_grade seem simple—just make the
grade list store tuple instances—the average_grade method now has a
loop within a loop and is difficult to read:

 def average_grade(self, name):
 by_subject = self._grades[name]

 score_sum, score_count = 0, 0
 for subject, scores in by_subject.items():
 subject_avg, total_weight = 0, 0

9780134853987_print.indb 1479780134853987_print.indb 147 24/09/19 1:34 PM24/09/19 1:34 PM

148 Chapter 5 Classes and Interfaces

 for score, weight in scores:
 subject_avg += score * weight
 total_weight += weight

 score_sum += subject_avg / total_weight
 score_count += 1

 return score_sum / score_count

Using the class has also gotten more difficult. It’s unclear what all of
the numbers in the positional arguments mean:

book = WeightedGradebook()
book.add_student('Albert Einstein')
book.report_grade('Albert Einstein', 'Math', 75, 0.05)
book.report_grade('Albert Einstein', 'Math', 65, 0.15)
book.report_grade('Albert Einstein', 'Math', 70, 0.80)
book.report_grade('Albert Einstein', 'Gym', 100, 0.40)
book.report_grade('Albert Einstein', 'Gym', 85, 0.60)
print(book.average_grade('Albert Einstein'))

>>>
80.25

When you see complexity like this, it’s time to make the leap from
built-in types like dictionaries, tuples, sets, and lists to a hierarchy of
classes.

In the grades example, at first I didn’t know I’d need to support
weighted grades, so the complexity of creating classes seemed unwar-
ranted. Python’s built-in dictionary and tuple types made it easy to
keep going, adding layer after layer to the internal bookkeeping. But
you should avoid doing this for more than one level of nesting; using
dictionaries that contain dictionaries makes your code hard to read
by other programmers and sets you up for a maintenance nightmare.

As soon as you realize that your bookkeeping is getting complicated,
break it all out into classes. You can then provide well-defined inter-
faces that better encapsulate your data. This approach also enables
you to create a layer of abstraction between your interfaces and your
concrete implementations.

Refactoring to Classes

There are many approaches to refactoring (see Item 89: “Consider
warnings to Refactor and Migrate Usage” for another). In this case,

9780134853987_print.indb 1489780134853987_print.indb 148 24/09/19 1:34 PM24/09/19 1:34 PM

I can start moving to classes at the bottom of the dependency tree:
a single grade. A class seems too heavyweight for such simple infor-
mation. A tuple, though, seems appropriate because grades are
immutable. Here, I use the tuple of (score, weight) to track grades in
a list:

grades = []
grades.append((95, 0.45))
grades.append((85, 0.55))
total = sum(score * weight for score, weight in grades)
total_weight = sum(weight for _, weight in grades)
average_grade = total / total_weight

I used _ (the underscore variable name, a Python convention for
unused variables) to capture the first entry in each grade’s tuple and
ignore it when calculating the total_weight.

The problem with this code is that tuple instances are positional. For
example, if I want to associate more information with a grade, such
as a set of notes from the teacher, I need to rewrite every usage of the
two-tuple to be aware that there are now three items present instead
of two, which means I need to use _ further to ignore certain indexes:

grades = []
grades.append((95, 0.45, 'Great job'))
grades.append((85, 0.55, 'Better next time'))
total = sum(score * weight for score, weight, _ in grades)
total_weight = sum(weight for _, weight, _ in grades)
average_grade = total / total_weight

This pattern of extending tuples longer and longer is similar to deep-
ening layers of dictionaries. As soon as you find yourself going longer
than a two-tuple, it’s time to consider another approach.

The namedtuple type in the collections built-in module does exactly
what I need in this case: It lets me easily define tiny, immutable data
classes:

from collections import namedtuple

Grade = namedtuple('Grade', ('score', 'weight'))

These classes can be constructed with positional or keyword argu-
ments. The fields are accessible with named attributes. Having named
attributes makes it easy to move from a namedtuple to a class later if
the requirements change again and I need to, say, support mutability
or behaviors in the simple data containers.

 Item 37: Compose Classes Instead of Nesting Built-in Types 149

9780134853987_print.indb 1499780134853987_print.indb 149 24/09/19 1:34 PM24/09/19 1:34 PM

150 Chapter 5 Classes and Interfaces

Limitations of namedtuple

Although namedtuple is useful in many circumstances, it’s import-
ant to understand when it can do more harm than good:

 ■ You can’t specify default argument values for namedtuple
classes. This makes them unwieldy when your data may have
many optional properties. If you find yourself using more than
a handful of attributes, using the built-in dataclasses module
may be a better choice.

 ■ The attribute values of namedtuple instances are still accessi-
ble using numerical indexes and iteration. Especially in exter-
nalized APIs, this can lead to unintentional usage that makes
it harder to move to a real class later. If you’re not in control
of all of the usage of your namedtuple instances, it’s better to
explicitly define a new class.

Next, I can write a class to represent a single subject that contains a
set of grades:

class Subject:
 def __init__(self):
 self._grades = []

 def report_grade(self, score, weight):
 self._grades.append(Grade(score, weight))

 def average_grade(self):
 total, total_weight = 0, 0
 for grade in self._grades:
 total += grade.score * grade.weight
 total_weight += grade.weight
 return total / total_weight

Then, I write a class to represent a set of subjects that are being stud-
ied by a single student:

class Student:
 def __init__(self):
 self._subjects = defaultdict(Subject)

 def get_subject(self, name):
 return self._subjects[name]

9780134853987_print.indb 1509780134853987_print.indb 150 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 37: Compose Classes Instead of Nesting Built-in Types 151

 def average_grade(self):
 total, count = 0, 0
 for subject in self._subjects.values():
 total += subject.average_grade()
 count += 1
 return total / count

Finally, I’d write a container for all of the students, keyed dynamically
by their names:

class Gradebook:
 def __init__(self):
 self._students = defaultdict(Student)

 def get_student(self, name):
 return self._students[name]

The line count of these classes is almost double the previous imple-
mentation’s size. But this code is much easier to read. The example
driving the classes is also more clear and extensible:

book = Gradebook()
albert = book.get_student('Albert Einstein')
math = albert.get_subject('Math')
math.report_grade(75, 0.05)
math.report_grade(65, 0.15)
math.report_grade(70, 0.80)
gym = albert.get_subject('Gym')
gym.report_grade(100, 0.40)
gym.report_grade(85, 0.60)
print(albert.average_grade())

>>>
80.25

It would also be possible to write backward-compatible methods to
help migrate usage of the old API style to the new hierarchy of objects.

Things to Remember

✦ Avoid making dictionaries with values that are dictionaries, long
tuples, or complex nestings of other built-in types.

✦ Use namedtuple for lightweight, immutable data containers before
you need the flexibility of a full class.

✦ Move your bookkeeping code to using multiple classes when your
internal state dictionaries get complicated.

9780134853987_print.indb 1519780134853987_print.indb 151 24/09/19 1:34 PM24/09/19 1:34 PM

152 Chapter 5 Classes and Interfaces

Item 38: Accept Functions Instead of Classes for
Simple Interfaces

Many of Python’s built-in APIs allow you to customize behavior by
passing in a function. These hooks are used by APIs to call back your
code while they execute. For example, the list type’s sort method
takes an optional key argument that’s used to determine each index’s
value for sorting (see Item 14: “Sort by Complex Criteria Using the key
Parameter” for details). Here, I sort a list of names based on their
lengths by providing the len built-in function as the key hook:

names = ['Socrates', 'Archimedes', 'Plato', 'Aristotle']
names.sort(key=len)
print(names)

>>>
['Plato', 'Socrates', 'Aristotle', 'Archimedes']

In other languages, you might expect hooks to be defined by an
abstract class. In Python, many hooks are just stateless functions
with well-defined arguments and return values. Functions are ideal
for hooks because they are easier to describe and simpler to define
than classes. Functions work as hooks because Python has first-class
functions: Functions and methods can be passed around and refer-
enced like any other value in the language.

For example, say that I want to customize the behavior of the
defaultdict class (see Item 17: “Prefer defaultdict Over setdefault to
Handle Missing Items in Internal State” for background). This data
structure allows you to supply a function that will be called with no
arguments each time a missing key is accessed. The function must
return the default value that the missing key should have in the dic-
tionary. Here, I define a hook that logs each time a key is missing and
returns 0 for the default value:

def log_missing():
 print('Key added')
 return 0

Given an initial dictionary and a set of desired increments, I can
cause the log_missing function to run and print twice (for 'red' and
'orange'):

from collections import defaultdict

current = {'green': 12, 'blue': 3}
increments = [

9780134853987_print.indb 1529780134853987_print.indb 152 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 38: Accept Functions Instead of Classes for Simple Interfaces 153

 ('red', 5),
 ('blue', 17),
 ('orange', 9),
]
result = defaultdict(log_missing, current)
print('Before:', dict(result))
for key, amount in increments:
 result[key] += amount
print('After: ', dict(result))

>>>
Before: {'green': 12, 'blue': 3}
Key added
Key added
After: {'green': 12, 'blue': 20, 'red': 5, 'orange': 9}

Supplying functions like log_missing makes APIs easy to build and
test because it separates side effects from deterministic behavior. For
example, say I now want the default value hook passed to defaultdict
to count the total number of keys that were missing. One way to
achieve this is by using a stateful closure (see Item 21: “Know How
Closures Interact with Variable Scope” for details). Here, I define a
helper function that uses such a closure as the default value hook:

def increment_with_report(current, increments):
 added_count = 0

 def missing():
 nonlocal added_count # Stateful closure
 added_count += 1
 return 0

 result = defaultdict(missing, current)
 for key, amount in increments:
 result[key] += amount

 return result, added_count

Running this function produces the expected result (2), even though
the defaultdict has no idea that the missing hook maintains state.
Another benefit of accepting simple functions for interfaces is that it’s
easy to add functionality later by hiding state in a closure:

result, count = increment_with_report(current, increments)
assert count == 2

9780134853987_print.indb 1539780134853987_print.indb 153 24/09/19 1:34 PM24/09/19 1:34 PM

154 Chapter 5 Classes and Interfaces

The problem with defining a closure for stateful hooks is that it’s
harder to read than the stateless function example. Another approach
is to define a small class that encapsulates the state you want to
track:

class CountMissing:
 def __init__(self):
 self.added = 0

 def missing(self):
 self.added += 1
 return 0

In other languages, you might expect that now defaultdict would
have to be modified to accommodate the interface of CountMissing.
But in Python, thanks to first-class functions, you can reference
the CountMissing.missing method directly on an object and pass it to
defaultdict as the default value hook. It’s trivial to have an object
instance’s method satisfy a function interface:

counter = CountMissing()
result = defaultdict(counter.missing, current) # Method ref
for key, amount in increments:
 result[key] += amount
assert counter.added == 2

Using a helper class like this to provide the behavior of a stateful
closure is clearer than using the increment_with_report function, as
above. However, in isolation, it’s still not immediately obvious what the
purpose of the CountMissing class is. Who constructs a CountMissing
object? Who calls the missing method? Will the class need other pub-
lic methods to be added in the future? Until you see its usage with
defaultdict, the class is a mystery.

To clarify this situation, Python allows classes to define the __call__
special method. __call__ allows an object to be called just like a func-
tion. It also causes the callable built-in function to return True for
such an instance, just like a normal function or method. All objects
that can be executed in this manner are referred to as callables:

class BetterCountMissing:
 def __init__(self):
 self.added = 0

 def __call__(self):
 self.added += 1
 return 0

9780134853987_print.indb 1549780134853987_print.indb 154 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 39: Use @classmethod Polymorphism to Construct Objects 155

counter = BetterCountMissing()
assert counter() == 0
assert callable(counter)

Here, I use a BetterCountMissing instance as the default value hook for
a defaultdict to track the number of missing keys that were added:

counter = BetterCountMissing()
result = defaultdict(counter, current) # Relies on __call__
for key, amount in increments:
 result[key] += amount
assert counter.added == 2

This is much clearer than the CountMissing.missing example. The
__call__ method indicates that a class’s instances will be used some-
where a function argument would also be suitable (like API hooks). It
directs new readers of the code to the entry point that’s responsible
for the class’s primary behavior. It provides a strong hint that the goal
of the class is to act as a stateful closure.

Best of all, defaultdict still has no view into what’s going on when
you use __call__. All that defaultdict requires is a function for the
default value hook. Python provides many different ways to satisfy a
simple function interface, and you can choose the one that works best
for what you need to accomplish.

Things to Remember

✦ Instead of defining and instantiating classes, you can often simply
use functions for simple interfaces between components in Python.

✦ References to functions and methods in Python are first class,
meaning they can be used in expressions (like any other type).

✦ The __call__ special method enables instances of a class to be
called like plain Python functions.

✦ When you need a function to maintain state, consider defining a
class that provides the __call__ method instead of defining a state-
ful closure.

Item 39: Use @classmethod Polymorphism to Construct
Objects Generically

In Python, not only do objects support polymorphism, but classes do
as well. What does that mean, and what is it good for?

Polymorphism enables multiple classes in a hierarchy to implement
their own unique versions of a method. This means that many classes

9780134853987_print.indb 1559780134853987_print.indb 155 24/09/19 1:34 PM24/09/19 1:34 PM

156 Chapter 5 Classes and Interfaces

can fulfill the same interface or abstract base class while providing
different functionality (see Item 43: “Inherit from collections.abc for
Custom Container Types”).

For example, say that I’m writing a MapReduce implementation, and
I want a common class to represent the input data. Here, I define
such a class with a read method that must be defined by subclasses:

class InputData:
 def read(self):
 raise NotImplementedError

I also have a concrete subclass of InputData that reads data from a
file on disk:

class PathInputData(InputData):
 def __init__(self, path):
 super().__init__()
 self.path = path

 def read(self):
 with open(self.path) as f:
 return f.read()

I could have any number of InputData subclasses, like PathInputData,
and each of them could implement the standard interface for read to
return the data to process. Other InputData subclasses could read
from the network, decompress data transparently, and so on.

I’d want a similar abstract interface for the MapReduce worker that
consumes the input data in a standard way:

class Worker:
 def __init__(self, input_data):
 self.input_data = input_data
 self.result = None

 def map(self):
 raise NotImplementedError

 def reduce(self, other):
 raise NotImplementedError

Here, I define a concrete subclass of Worker to implement the specific
MapReduce function I want to apply—a simple newline counter:

class LineCountWorker(Worker):
 def map(self):
 data = self.input_data.read()
 self.result = data.count('\n')

9780134853987_print.indb 1569780134853987_print.indb 156 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 39: Use @classmethod Polymorphism to Construct Objects 157

 def reduce(self, other):
 self.result += other.result

It may look like this implementation is going great, but I’ve reached the
biggest hurdle in all of this. What connects all of these pieces? I have
a nice set of classes with reasonable interfaces and abstractions, but
that’s only useful once the objects are constructed. What’s responsi-
ble for building the objects and orchestrating the MapReduce?

The simplest approach is to manually build and connect the objects
with some helper functions. Here, I list the contents of a directory and
construct a PathInputData instance for each file it contains:

import os

def generate_inputs(data_dir):
 for name in os.listdir(data_dir):
 yield PathInputData(os.path.join(data_dir, name))

Next, I create the LineCountWorker instances by using the InputData
instances returned by generate_inputs:

def create_workers(input_list):
 workers = []
 for input_data in input_list:
 workers.append(LineCountWorker(input_data))
 return workers

I execute these Worker instances by fanning out the map step to multi-
ple threads (see Item 53: “Use Threads for Blocking I/O, Avoid for Par-
allelism” for background). Then, I call reduce repeatedly to combine
the results into one final value:

from threading import Thread

def execute(workers):
 threads = [Thread(target=w.map) for w in workers]
 for thread in threads: thread.start()
 for thread in threads: thread.join()

 first, *rest = workers
 for worker in rest:
 first.reduce(worker)
 return first.result

9780134853987_print.indb 1579780134853987_print.indb 157 24/09/19 1:34 PM24/09/19 1:34 PM

158 Chapter 5 Classes and Interfaces

Finally, I connect all the pieces together in a function to run each
step:

def mapreduce(data_dir):
 inputs = generate_inputs(data_dir)
 workers = create_workers(inputs)
 return execute(workers)

Running this function on a set of test input files works great:

import os
import random

def write_test_files(tmpdir):
 os.makedirs(tmpdir)
 for i in range(100):
 with open(os.path.join(tmpdir, str(i)), 'w') as f:
 f.write('\n' * random.randint(0, 100))

tmpdir = 'test_inputs'
write_test_files(tmpdir)

result = mapreduce(tmpdir)
print(f'There are {result} lines')

>>>
There are 4360 lines

What’s the problem? The huge issue is that the mapreduce func-
tion is not generic at all. If I wanted to write another InputData or
Worker subclass, I would also have to rewrite the generate_inputs,
create_workers, and mapreduce functions to match.

This problem boils down to needing a generic way to construct objects.
In other languages, you’d solve this problem with constructor poly-
morphism, requiring that each InputData subclass provides a spe-
cial constructor that can be used generically by the helper methods
that orchestrate the MapReduce (similar to the factory pattern). The
trouble is that Python only allows for the single constructor method
__init__. It’s unreasonable to require every InputData subclass to
have a compatible constructor.

The best way to solve this problem is with class method polymor-
phism. This is exactly like the instance method polymorphism I used
for InputData.read, except that it’s for whole classes instead of their
constructed objects.

9780134853987_print.indb 1589780134853987_print.indb 158 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 39: Use @classmethod Polymorphism to Construct Objects 159

Let me apply this idea to the MapReduce classes. Here, I extend the
InputData class with a generic @classmethod that’s responsible for cre-
ating new InputData instances using a common interface:

class GenericInputData:
 def read(self):
 raise NotImplementedError

 @classmethod
 def generate_inputs(cls, config):
 raise NotImplementedError

I have generate_inputs take a dictionary with a set of configuration
parameters that the GenericInputData concrete subclass needs to inter-
pret. Here, I use the config to find the directory to list for input files:

class PathInputData(GenericInputData):
 ...

 @classmethod
 def generate_inputs(cls, config):
 data_dir = config['data_dir']
 for name in os.listdir(data_dir):
 yield cls(os.path.join(data_dir, name))

Similarly, I can make the create_workers helper part of the
GenericWorker class. Here, I use the input_class parameter, which
must be a subclass of GenericInputData, to generate the necessary
inputs. I construct instances of the GenericWorker concrete subclass
by using cls() as a generic constructor:

class GenericWorker:
 def __init__(self, input_data):
 self.input_data = input_data
 self.result = None

 def map(self):
 raise NotImplementedError

 def reduce(self, other):
 raise NotImplementedError

 @classmethod
 def create_workers(cls, input_class, config):
 workers = []
 for input_data in input_class.generate_inputs(config):
 workers.append(cls(input_data))
 return workers

9780134853987_print.indb 1599780134853987_print.indb 159 24/09/19 1:34 PM24/09/19 1:34 PM

160 Chapter 5 Classes and Interfaces

Note that the call to input_class.generate_inputs above is the
class polymorphism that I’m trying to show. You can also see how
create_workers calling cls() provides an alternative way to construct
GenericWorker objects besides using the __init__ method directly.

The effect on my concrete GenericWorker subclass is nothing more
than changing its parent class:

class LineCountWorker(GenericWorker):
 ...

Finally, I can rewrite the mapreduce function to be completely generic
by calling create_workers:

def mapreduce(worker_class, input_class, config):
 workers = worker_class.create_workers(input_class, config)
 return execute(workers)

Running the new worker on a set of test files produces the same
result as the old implementation. The difference is that the mapreduce
function requires more parameters so that it can operate generically:

config = {'data_dir': tmpdir}
result = mapreduce(LineCountWorker, PathInputData, config)
print(f'There are {result} lines')

>>>
There are 4360 lines

Now, I can write other GenericInputData and GenericWorker sub-
classes as I wish, without having to rewrite any of the glue code.

Things to Remember

✦ Python only supports a single constructor per class: the __init__
method.

✦ Use @classmethod to define alternative constructors for your classes.

✦ Use class method polymorphism to provide generic ways to build
and connect many concrete subclasses.

Item 40: Initialize Parent Classes with super

The old, simple way to initialize a parent class from a child class
is to directly call the parent class’s __init__ method with the child
instance:

class MyBaseClass:
 def __init__(self, value):
 self.value = value

9780134853987_print.indb 1609780134853987_print.indb 160 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 40: Initialize Parent Classes with super 161

class MyChildClass(MyBaseClass):
 def __init__(self):
 MyBaseClass.__init__(self, 5)

This approach works fine for basic class hierarchies but breaks in
many cases.

If a class is affected by multiple inheritance (something to avoid in
general; see Item 41: “Consider Composing Functionality with Mix-in
Classes”), calling the superclasses’ __init__ methods directly can
lead to unpredictable behavior.

One problem is that the __init__ call order isn’t specified across all
subclasses. For example, here I define two parent classes that operate
on the instance’s value field:

class TimesTwo:
 def __init__(self):
 self.value *= 2

class PlusFive:
 def __init__(self):
 self.value += 5

This class defines its parent classes in one ordering:

class OneWay(MyBaseClass, TimesTwo, PlusFive):
 def __init__(self, value):
 MyBaseClass.__init__(self, value)
 TimesTwo.__init__(self)
 PlusFive.__init__(self)

And constructing it produces a result that matches the parent class
ordering:

foo = OneWay(5)
print('First ordering value is (5 * 2) + 5 =', foo.value)

>>>
First ordering value is (5 * 2) + 5 = 15

Here’s another class that defines the same parent classes but in a
different ordering (PlusFive followed by TimesTwo instead of the other
way around):

class AnotherWay(MyBaseClass, PlusFive, TimesTwo):
 def __init__(self, value):
 MyBaseClass.__init__(self, value)
 TimesTwo.__init__(self)
 PlusFive.__init__(self)

9780134853987_print.indb 1619780134853987_print.indb 161 24/09/19 1:34 PM24/09/19 1:34 PM

162 Chapter 5 Classes and Interfaces

However, I left the calls to the parent class constructors—
PlusFive.__init__ and TimesTwo.__init__—in the same order as before,
which means this class’s behavior doesn’t match the order of the par-
ent classes in its definition. The conflict here between the inheritance
base classes and the __init__ calls is hard to spot, which makes this
especially difficult for new readers of the code to understand:

bar = AnotherWay(5)
print('Second ordering value is', bar.value)

>>>
Second ordering value is 15

Another problem occurs with diamond inheritance. Diamond inher-
itance happens when a subclass inherits from two separate classes
that have the same superclass somewhere in the hierarchy. Diamond
inheritance causes the common superclass’s __init__ method to
run multiple times, causing unexpected behavior. For example, here
I define two child classes that inherit from MyBaseClass:

class TimesSeven(MyBaseClass):
 def __init__(self, value):
 MyBaseClass.__init__(self, value)
 self.value *= 7

class PlusNine(MyBaseClass):
 def __init__(self, value):
 MyBaseClass.__init__(self, value)
 self.value += 9

Then, I define a child class that inherits from both of these classes,
making MyBaseClass the top of the diamond:

class ThisWay(TimesSeven, PlusNine):
 def __init__(self, value):
 TimesSeven.__init__(self, value)
 PlusNine.__init__(self, value)

foo = ThisWay(5)
print('Should be (5 * 7) + 9 = 44 but is', foo.value)

>>>
Should be (5 * 7) + 9 = 44 but is 14

The call to the second parent class’s constructor, PlusNine.__init__,
causes self.value to be reset back to 5 when MyBaseClass.__init__ gets
called a second time. That results in the calculation of self.value to be
5 + 9 = 14, completely ignoring the effect of the TimesSeven.__init__

9780134853987_print.indb 1629780134853987_print.indb 162 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 40: Initialize Parent Classes with super 163

constructor. This behavior is surprising and can be very difficult to
debug in more complex cases.

To solve these problems, Python has the super built-in function and
standard method resolution order (MRO). super ensures that common
superclasses in diamond hierarchies are run only once (for another
example, see Item 48: “Validate Subclasses with __init_subclass__”).
The MRO defines the ordering in which superclasses are initialized,
following an algorithm called C3 linearization.

Here, I create a diamond-shaped class hierarchy again, but this time
I use super to initialize the parent class:

class TimesSevenCorrect(MyBaseClass):
 def __init__(self, value):
 super().__init__(value)
 self.value *= 7

class PlusNineCorrect(MyBaseClass):
 def __init__(self, value):
 super().__init__(value)
 self.value += 9

Now, the top part of the diamond, MyBaseClass.__init__, is run only a
single time. The other parent classes are run in the order specified in
the class statement:

class GoodWay(TimesSevenCorrect, PlusNineCorrect):
 def __init__(self, value):
 super().__init__(value)

foo = GoodWay(5)
print('Should be 7 * (5 + 9) = 98 and is', foo.value)

>>>
Should be 7 * (5 + 9) = 98 and is 98

This order may seem backward at first. Shouldn’t
TimesSevenCorrect.__init__ have run first? Shouldn’t the result be
(5 * 7) + 9 = 44? The answer is no. This ordering matches what the
MRO defines for this class. The MRO ordering is available on a class
method called mro:

mro_str = '\n'.join(repr(cls) for cls in GoodWay.mro())
print(mro_str)

>>>
<class '__main__.GoodWay'>
<class '__main__.TimesSevenCorrect'>

9780134853987_print.indb 1639780134853987_print.indb 163 24/09/19 1:34 PM24/09/19 1:34 PM

164 Chapter 5 Classes and Interfaces

<class '__main__.PlusNineCorrect'>
<class '__main__.MyBaseClass'>
<class 'object'>

When I call GoodWay(5), it in turn calls TimesSevenCorrect.__init__,
which calls PlusNineCorrect.__init__, which calls MyBaseClass.__
init__. Once this reaches the top of the diamond, all of the initializa-
tion methods actually do their work in the opposite order from how
their __init__ functions were called. MyBaseClass.__init__ assigns
value to 5. PlusNineCorrect.__init__ adds 9 to make value equal 14.
TimesSevenCorrect.__init__ multiplies it by 7 to make value equal 98.

Besides making multiple inheritance robust, the call to super().
__init__ is also much more maintainable than calling
MyBaseClass.__init__ directly from within the subclasses. I could
later rename MyBaseClass to something else or have TimesSevenCorrect
and PlusNineCorrect inherit from another superclass without having
to update their __init__ methods to match.

The super function can also be called with two parameters: first the
type of the class whose MRO parent view you’re trying to access, and
then the instance on which to access that view. Using these optional
parameters within the constructor looks like this:

class ExplicitTrisect(MyBaseClass):
 def __init__(self, value):
 super(ExplicitTrisect, self).__init__(value)
 self.value /= 3

However, these parameters are not required for object instance ini-
tialization. Python’s compiler automatically provides the correct
parameters (__class__ and self) for you when super is called with
zero arguments within a class definition. This means all three of
these usages are equivalent:

class AutomaticTrisect(MyBaseClass):
 def __init__(self, value):
 super(__class__, self).__init__(value)
 self.value /= 3

class ImplicitTrisect(MyBaseClass):
 def __init__(self, value):
 super().__init__(value)
 self.value /= 3

assert ExplicitTrisect(9).value == 3
assert AutomaticTrisect(9).value == 3
assert ImplicitTrisect(9).value == 3

9780134853987_print.indb 1649780134853987_print.indb 164 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 41: Consider Composing Functionality with Mix-in Classes 165

The only time you should provide parameters to super is in situa-
tions where you need to access the specific functionality of a super-
class’s implementation from a child class (e.g., to wrap or reuse
functionality).

Things to Remember

✦ Python’s standard method resolution order (MRO) solves the prob-
lems of superclass initialization order and diamond inheritance.

✦ Use the super built-in function with zero arguments to initialize
parent classes.

Item 41: Consider Composing Functionality with
Mix-in Classes

Python is an object-oriented language with built-in facilities for mak-
ing multiple inheritance tractable (see Item 40: “Initialize Parent
Classes with super”). However, it’s better to avoid multiple inheritance
altogether.

If you find yourself desiring the convenience and encapsulation that
come with multiple inheritance, but want to avoid the potential head-
aches, consider writing a mix-in instead. A mix-in is a class that
defines only a small set of additional methods for its child classes to
provide. Mix-in classes don’t define their own instance attributes nor
require their __init__ constructor to be called.

Writing mix-ins is easy because Python makes it trivial to inspect the
current state of any object, regardless of its type. Dynamic inspection
means you can write generic functionality just once, in a mix-in, and
it can then be applied to many other classes. Mix-ins can be com-
posed and layered to minimize repetitive code and maximize reuse.

For example, say I want the ability to convert a Python object from its
in-memory representation to a dictionary that’s ready for serializa-
tion. Why not write this functionality generically so I can use it with
all my classes?

Here, I define an example mix-in that accomplishes this with a new
public method that’s added to any class that inherits from it:

class ToDictMixin:
 def to_dict(self):
 return self._traverse_dict(self.__dict__)

9780134853987_print.indb 1659780134853987_print.indb 165 24/09/19 1:34 PM24/09/19 1:34 PM

166 Chapter 5 Classes and Interfaces

The implementation details are straightforward and rely on dynamic
attribute access using hasattr, dynamic type inspection with
isinstance, and accessing the instance dictionary __dict__:

 def _traverse_dict(self, instance_dict):
 output = {}
 for key, value in instance_dict.items():
 output[key] = self._traverse(key, value)
 return output

 def _traverse(self, key, value):
 if isinstance(value, ToDictMixin):
 return value.to_dict()
 elif isinstance(value, dict):
 return self._traverse_dict(value)
 elif isinstance(value, list):
 return [self._traverse(key, i) for i in value]
 elif hasattr(value, '__dict__'):
 return self._traverse_dict(value.__dict__)
 else:
 return value

Here, I define an example class that uses the mix-in to make a dictio-
nary representation of a binary tree:

class BinaryTree(ToDictMixin):
 def __init__(self, value, left=None, right=None):
 self.value = value
 self.left = left
 self.right = right

Translating a large number of related Python objects into a dictionary
becomes easy:

tree = BinaryTree(10,
 left=BinaryTree(7, right=BinaryTree(9)),
 right=BinaryTree(13, left=BinaryTree(11)))
print(tree.to_dict())

>>>
{'value': 10,
 'left': {'value': 7,
 'left': None,
 'right': {'value': 9, 'left': None, 'right': None}},
 'right': {'value': 13,
 'left': {'value': 11, 'left': None, 'right': None},
 'right': None}}

9780134853987_print.indb 1669780134853987_print.indb 166 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 41: Consider Composing Functionality with Mix-in Classes 167

The best part about mix-ins is that you can make their generic func-
tionality pluggable so behaviors can be overridden when required. For
example, here I define a subclass of BinaryTree that holds a reference
to its parent. This circular reference would cause the default imple-
mentation of ToDictMixin.to_dict to loop forever:

class BinaryTreeWithParent(BinaryTree):
 def __init__(self, value, left=None,
 right=None, parent=None):
 super().__init__(value, left=left, right=right)
 self.parent = parent

The solution is to override the BinaryTreeWithParent._traverse method
to only process values that matter, preventing cycles encountered by
the mix-in. Here, the _traverse override inserts the parent’s numeri-
cal value and otherwise defers to the mix-in’s default implementation
by using the super built-in function:

 def _traverse(self, key, value):
 if (isinstance(value, BinaryTreeWithParent) and
 key == 'parent'):
 return value.value # Prevent cycles
 else:
 return super()._traverse(key, value)

Calling BinaryTreeWithParent.to_dict works without issue because
the circular referencing properties aren’t followed:

root = BinaryTreeWithParent(10)
root.left = BinaryTreeWithParent(7, parent=root)
root.left.right = BinaryTreeWithParent(9, parent=root.left)
print(root.to_dict())

>>>
{'value': 10,
 'left': {'value': 7,
 'left': None,
 'right': {'value': 9,
 'left': None,
 'right': None,
 'parent': 7},
 'parent': 10},
 'right': None,
 'parent': None}

9780134853987_print.indb 1679780134853987_print.indb 167 24/09/19 1:34 PM24/09/19 1:34 PM

168 Chapter 5 Classes and Interfaces

By defining BinaryTreeWithParent._traverse, I’ve also enabled any
class that has an attribute of type BinaryTreeWithParent to automati-
cally work with the ToDictMixin:

class NamedSubTree(ToDictMixin):
 def __init__(self, name, tree_with_parent):
 self.name = name
 self.tree_with_parent = tree_with_parent

my_tree = NamedSubTree('foobar', root.left.right)
print(my_tree.to_dict()) # No infinite loop

>>>
{'name': 'foobar',
 'tree_with_parent': {'value': 9,
 'left': None,
 'right': None,
 'parent': 7}}

Mix-ins can also be composed together. For example, say I want a
mix-in that provides generic JSON serialization for any class. I can do
this by assuming that a class provides a to_dict method (which may
or may not be provided by the ToDictMixin class):

import json

class JsonMixin:
 @classmethod
 def from_json(cls, data):
 kwargs = json.loads(data)
 return cls(**kwargs)

 def to_json(self):
 return json.dumps(self.to_dict())

Note how the JsonMixin class defines both instance methods and class
methods. Mix-ins let you add either kind of behavior to subclasses.
In this example, the only requirements of a JsonMixin subclass are
providing a to_dict method and taking keyword arguments for
the __init__ method (see Item 23: “Provide Optional Behavior with
 Keyword Arguments” for background).

This mix-in makes it simple to create hierarchies of utility classes
that can be serialized to and from JSON with little boilerplate. For
example, here I have a hierarchy of data classes representing parts of
a datacenter topology:

9780134853987_print.indb 1689780134853987_print.indb 168 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 41: Consider Composing Functionality with Mix-in Classes 169

class DatacenterRack(ToDictMixin, JsonMixin):
 def __init__(self, switch=None, machines=None):
 self.switch = Switch(**switch)
 self.machines = [
 Machine(**kwargs) for kwargs in machines]

class Switch(ToDictMixin, JsonMixin):
 def __init__(self, ports=None, speed=None):
 self.ports = ports
 self.speed = speed

class Machine(ToDictMixin, JsonMixin):
 def __init__(self, cores=None, ram=None, disk=None):
 self.cores = cores
 self.ram = ram
 self.disk = disk

Serializing these classes to and from JSON is simple. Here, I verify
that the data is able to be sent round-trip through serializing and
deserializing:

serialized = """{
 "switch": {"ports": 5, "speed": 1e9},
 "machines": [
 {"cores": 8, "ram": 32e9, "disk": 5e12},
 {"cores": 4, "ram": 16e9, "disk": 1e12},
 {"cores": 2, "ram": 4e9, "disk": 500e9}
]
}"""

deserialized = DatacenterRack.from_json(serialized)
roundtrip = deserialized.to_json()
assert json.loads(serialized) == json.loads(roundtrip)

When you use mix-ins like this, it’s fine if the class you apply
JsonMixin to already inherits from JsonMixin higher up in the class
hierarchy. The resulting class will behave the same way, thanks to
the behavior of super.

Things to Remember

✦ Avoid using multiple inheritance with instance attributes and
__init__ if mix-in classes can achieve the same outcome.

✦ Use pluggable behaviors at the instance level to provide per-class
customization when mix-in classes may require it.

9780134853987_print.indb 1699780134853987_print.indb 169 24/09/19 1:34 PM24/09/19 1:34 PM

170 Chapter 5 Classes and Interfaces

✦ Mix-ins can include instance methods or class methods, depending
on your needs.

✦ Compose mix-ins to create complex functionality from simple
behaviors.

Item 42: Prefer Public Attributes Over Private Ones

In Python, there are only two types of visibility for a class’s attributes:
public and private:

class MyObject:
 def __init__(self):
 self.public_field = 5
 self.__private_field = 10

 def get_private_field(self):
 return self.__private_field

Public attributes can be accessed by anyone using the dot operator on
the object:

foo = MyObject()
assert foo.public_field == 5

Private fields are specified by prefixing an attribute’s name with a
double underscore. They can be accessed directly by methods of the
containing class:

assert foo.get_private_field() == 10

However, directly accessing private fields from outside the class raises
an exception:

foo.__private_field

>>>
Traceback ...
AttributeError: 'MyObject' object has no attribute
�'__private_field'

Class methods also have access to private attributes because they are
declared within the surrounding class block:

class MyOtherObject:
 def __init__(self):
 self.__private_field = 71

 @classmethod
 def get_private_field_of_instance(cls, instance):
 return instance.__private_field

9780134853987_print.indb 1709780134853987_print.indb 170 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 42: Prefer Public Attributes Over Private Ones 171

bar = MyOtherObject()
assert MyOtherObject.get_private_field_of_instance(bar) == 71

As you’d expect with private fields, a subclass can’t access its parent
class’s private fields:

class MyParentObject:
 def __init__(self):
 self.__private_field = 71

class MyChildObject(MyParentObject):
 def get_private_field(self):
 return self.__private_field

baz = MyChildObject()
baz.get_private_field()

>>>
Traceback ...
AttributeError: 'MyChildObject' object has no attribute
�'_MyChildObject__private_field'

The private attribute behavior is implemented with a sim-
ple transformation of the attribute name. When the Python
compiler sees private attribute access in methods like
MyChildObject.get_private_field, it translates the __private_field
attribute access to use the name _MyChildObject__private_field
instead. In the example above, __private_field is only defined in
MyParentObject.__init__, which means the private attribute’s real
name is _MyParentObject__private_field. Accessing the parent’s pri-
vate attribute from the child class fails simply because the trans-
formed attribute name doesn’t exist (_MyChildObject__private_field
instead of _MyParentObject__private_field).

Knowing this scheme, you can easily access the private attributes
of any class—from a subclass or externally—without asking for
permission:

assert baz._MyParentObject__private_field == 71

If you look in the object’s attribute dictionary, you can see that private
attributes are actually stored with the names as they appear after the
transformation:

print(baz.__dict__)

>>>
{'_MyParentObject__private_field': 71}

9780134853987_print.indb 1719780134853987_print.indb 171 24/09/19 1:34 PM24/09/19 1:34 PM

172 Chapter 5 Classes and Interfaces

Why doesn’t the syntax for private attributes actually enforce strict
visibility? The simplest answer is one often-quoted motto of Python:
“We are all consenting adults here.” What this means is that we don’t
need the language to prevent us from doing what we want to do. It’s
our individual choice to extend functionality as we wish and to take
responsibility for the consequences of such a risk. Python program-
mers believe that the benefits of being open—permitting unplanned
extension of classes by default—outweigh the downsides.

Beyond that, having the ability to hook language features like attri-
bute access (see Item 47: “Use __getattr__, __getattribute__, and
__setattr__ for Lazy Attributes”) enables you to mess around with the
internals of objects whenever you wish. If you can do that, what is the
value of Python trying to prevent private attribute access otherwise?

To minimize damage from accessing internals unknowingly, Python
programmers follow a naming convention defined in the style guide
(see Item 2: “Follow the PEP 8 Style Guide”). Fields prefixed by a sin-
gle underscore (like _protected_field) are protected by convention,
meaning external users of the class should proceed with caution.

However, many programmers who are new to Python use private fields
to indicate an internal API that shouldn’t be accessed by subclasses
or externally:

class MyStringClass:
 def __init__(self, value):
 self.__value = value

 def get_value(self):
 return str(self.__value)

foo = MyStringClass(5)
assert foo.get_value() == '5'

This is the wrong approach. Inevitably someone—maybe even
you—will want to subclass your class to add new behavior or to
work around deficiencies in existing methods (e.g., the way that
MyStringClass.get_value always returns a string). By choosing pri-
vate attributes, you’re only making subclass overrides and extensions
cumbersome and brittle. Your potential subclassers will still access
the private fields when they absolutely need to do so:

class MyIntegerSubclass(MyStringClass):
 def get_value(self):
 return int(self._MyStringClass__value)

9780134853987_print.indb 1729780134853987_print.indb 172 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 42: Prefer Public Attributes Over Private Ones 173

foo = MyIntegerSubclass('5')
assert foo.get_value() == 5

But if the class hierarchy changes beneath you, these classes will
break because the private attribute references are no longer valid.
Here, the MyIntegerSubclass class’s immediate parent, MyStringClass,
has had another parent class added, called MyBaseClass:

class MyBaseClass:
 def __init__(self, value):
 self.__value = value

 def get_value(self):
 return self.__value

class MyStringClass(MyBaseClass):
 def get_value(self):
 return str(super().get_value()) # Updated

class MyIntegerSubclass(MyStringClass):
 def get_value(self):
 return int(self._MyStringClass__value) # Not updated

The __value attribute is now assigned in the MyBaseClass parent class,
not the MyStringClass parent. This causes the private variable refer-
ence self._MyStringClass__value to break in MyIntegerSubclass:

foo = MyIntegerSubclass(5)
foo.get_value()

>>>
Traceback ...
AttributeError: 'MyIntegerSubclass' object has no attribute
�'_MyStringClass__value'

In general, it’s better to err on the side of allowing subclasses to do
more by using protected attributes. Document each protected field
and explain which fields are internal APIs available to subclasses and
which should be left alone entirely. This is as much advice to other
programmers as it is guidance for your future self on how to extend
your own code safely:

class MyStringClass:
 def __init__(self, value):
 # This stores the user-supplied value for the object.
 # It should be coercible to a string. Once assigned in
 # the object it should be treated as immutable.

9780134853987_print.indb 1739780134853987_print.indb 173 24/09/19 1:34 PM24/09/19 1:34 PM

174 Chapter 5 Classes and Interfaces

 self._value = value

 ...

The only time to seriously consider using private attributes is when
you’re worried about naming conflicts with subclasses. This problem
occurs when a child class unwittingly defines an attribute that was
already defined by its parent class:

class ApiClass:
 def __init__(self):
 self._value = 5

 def get(self):
 return self._value

class Child(ApiClass):
 def __init__(self):
 super().__init__()
 self._value = 'hello' # Conflicts

a = Child()
print(f'{a.get()} and {a._value} should be different')

>>>
hello and hello should be different

This is primarily a concern with classes that are part of a public
API; the subclasses are out of your control, so you can’t refactor to
fix the problem. Such a conflict is especially possible with attribute
names that are very common (like value). To reduce the risk of this
issue occurring, you can use a private attribute in the parent class
to ensure that there are no attribute names that overlap with child
classes:

class ApiClass:
 def __init__(self):
 self.__value = 5 # Double underscore

 def get(self):
 return self.__value # Double underscore

class Child(ApiClass):
 def __init__(self):
 super().__init__()
 self._value = 'hello' # OK!

9780134853987_print.indb 1749780134853987_print.indb 174 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 43: Inherit from collections.abc for Custom Container Types 175

a = Child()
print(f'{a.get()} and {a._value} are different')

>>>
5 and hello are different

Things to Remember

✦ Private attributes aren’t rigorously enforced by the Python compiler.

✦ Plan from the beginning to allow subclasses to do more with your
internal APIs and attributes instead of choosing to lock them out.

✦ Use documentation of protected fields to guide subclasses instead of
trying to force access control with private attributes.

✦ Only consider using private attributes to avoid naming conflicts
with subclasses that are out of your control.

Item 43: Inherit from collections.abc for Custom
Container Types

Much of programming in Python is defining classes that contain data
and describing how such objects relate to each other. Every Python
class is a container of some kind, encapsulating attributes and func-
tionality together. Python also provides built-in container types for
managing data: lists, tuples, sets, and dictionaries.

When you’re designing classes for simple use cases like sequences,
it’s natural to want to subclass Python’s built-in list type directly.
For example, say I want to create my own custom list type that has
additional methods for counting the frequency of its members:

class FrequencyList(list):
 def __init__(self, members):
 super().__init__(members)

 def frequency(self):
 counts = {}
 for item in self:
 counts[item] = counts.get(item, 0) + 1
 return counts

By subclassing list, I get all of list’s standard functionality and pre-
serve the semantics familiar to all Python programmers. I can define
additional methods to provide any custom behaviors that I need:

foo = FrequencyList(['a', 'b', 'a', 'c', 'b', 'a', 'd'])
print('Length is', len(foo))

9780134853987_print.indb 1759780134853987_print.indb 175 24/09/19 1:34 PM24/09/19 1:34 PM

176 Chapter 5 Classes and Interfaces

foo.pop()
print('After pop:', repr(foo))
print('Frequency:', foo.frequency())

>>>
Length is 7
After pop: ['a', 'b', 'a', 'c', 'b', 'a']
Frequency: {'a': 3, 'b': 2, 'c': 1}

Now, imagine that I want to provide an object that feels like a list
and allows indexing but isn’t a list subclass. For example, say that
I want to provide sequence semantics (like list or tuple) for a binary
tree class:

class BinaryNode:
 def __init__(self, value, left=None, right=None):
 self.value = value
 self.left = left
 self.right = right

How do you make this class act like a sequence type? Python imple-
ments its container behaviors with instance methods that have spe-
cial names. When you access a sequence item by index:

bar = [1, 2, 3]
bar[0]

it will be interpreted as:

bar.__getitem__(0)

To make the BinaryNode class act like a sequence, you can provide
a custom implementation of __getitem__ (often pronounced “dunder
getitem” as an abbreviation for “double underscore getitem”) that tra-
verses the object tree depth first:

class IndexableNode(BinaryNode):
 def _traverse(self):
 if self.left is not None:
 yield from self.left._traverse()
 yield self
 if self.right is not None:
 yield from self.right._traverse()

 def __getitem__(self, index):
 for i, item in enumerate(self._traverse()):
 if i == index:
 return item.value
 raise IndexError(f'Index {index} is out of range')

9780134853987_print.indb 1769780134853987_print.indb 176 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 43: Inherit from collections.abc for Custom Container Types 177

You can construct your binary tree as usual:

tree = IndexableNode(
 10,
 left=IndexableNode(
 5,
 left=IndexableNode(2),
 right=IndexableNode(
 6,
 right=IndexableNode(7))),
 right=IndexableNode(
 15,
 left=IndexableNode(11)))

But you can also access it like a list in addition to being able to tra-
verse the tree with the left and right attributes:

print('LRR is', tree.left.right.right.value)
print('Index 0 is', tree[0])
print('Index 1 is', tree[1])
print('11 in the tree?', 11 in tree)
print('17 in the tree?', 17 in tree)
print('Tree is', list(tree))

>>>
LRR is 7
Index 0 is 2
Index 1 is 5
11 in the tree? True
17 in the tree? False
Tree is [2, 5, 6, 7, 10, 11, 15]

The problem is that implementing __getitem__ isn’t enough to provide
all of the sequence semantics you’d expect from a list instance:

len(tree)

>>>
Traceback ...
TypeError: object of type 'IndexableNode' has no len()

The len built-in function requires another special method, named
__len__, that must have an implementation for a custom sequence
type:

class SequenceNode(IndexableNode):
 def __len__(self):
 for count, _ in enumerate(self._traverse(), 1):
 pass
 return count

9780134853987_print.indb 1779780134853987_print.indb 177 24/09/19 1:34 PM24/09/19 1:34 PM

178 Chapter 5 Classes and Interfaces

tree = SequenceNode(
 10,
 left=SequenceNode(
 5,
 left=SequenceNode(2),
 right=SequenceNode(
 6,
 right=SequenceNode(7))),
 right=SequenceNode(
 15,
 left=SequenceNode(11))
)

print('Tree length is', len(tree))

>>>
Tree length is 7

Unfortunately, this still isn’t enough for the class to fully be a valid
sequence. Also missing are the count and index methods that a
Python programmer would expect to see on a sequence like list or
tuple. It turns out that defining your own container types is much
harder than it seems.

To avoid this difficulty throughout the Python universe, the built-in
collections.abc module defines a set of abstract base classes that
provide all of the typical methods for each container type. When you
subclass from these abstract base classes and forget to implement
required methods, the module tells you something is wrong:

from collections.abc import Sequence

class BadType(Sequence):
 pass

foo = BadType()

>>>
Traceback ...
TypeError: Can't instantiate abstract class BadType with
�abstract methods __getitem__, __len__

When you do implement all the methods required by an abstract base
class from collections.abc, as I did above with SequenceNode, it pro-
vides all of the additional methods, like index and count, for free:

class BetterNode(SequenceNode, Sequence):
 pass

9780134853987_print.indb 1789780134853987_print.indb 178 24/09/19 1:34 PM24/09/19 1:34 PM

 Item 43: Inherit from collections.abc for Custom Container Types 179

tree = BetterNode(
 10,
 left=BetterNode(
 5,
 left=BetterNode(2),
 right=BetterNode(
 6,
 right=BetterNode(7))),
 right=BetterNode(
 15,
 left=BetterNode(11))
)

print('Index of 7 is', tree.index(7))
print('Count of 10 is', tree.count(10))

>>>
Index of 7 is 3
Count of 10 is 1

The benefit of using these abstract base classes is even greater for
more complex container types such as Set and MutableMapping, which
have a large number of special methods that need to be implemented
to match Python conventions.

Beyond the collections.abc module, Python uses a variety of special
methods for object comparisons and sorting, which may be provided
by container classes and non-container classes alike (see Item 73:
“Know How to Use heapq for Priority Queues” for an example).

Things to Remember

✦ Inherit directly from Python’s container types (like list or dict) for
simple use cases.

✦ Beware of the large number of methods required to implement cus-
tom container types correctly.

✦ Have your custom container types inherit from the interfaces
defined in collections.abc to ensure that your classes match
required interfaces and behaviors.

9780134853987_print.indb 1799780134853987_print.indb 179 24/09/19 1:34 PM24/09/19 1:34 PM

9780134853987_print.indb 1809780134853987_print.indb 180 24/09/19 1:34 PM24/09/19 1:34 PM

